Using the MIPS Calling Convention

Recursive Functions in Assembly

CS 64: Computer Organization and Design Logic
Lecture #10
Fall 2018

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

* Lab #5 this week — due on Friday

e Grades will be up on GauchoSpace today by noon!

— |If you want to review your exams, see your TAs:
LAST NAMES A thruQ See Bay-Yuan (Th.12:30-2:30pm)
LAST NAMES RthruZ See Harmeet (Th.9:30-11:30 am)

 Mid-quarter evaluations for T.As
— Links on the last slide and will put up on Piazza too
— Optional to do, but very appreciated by us all!

e Remember: NO CLASSES ON MONDAY!

— University holiday! Remember to thank a veteran!

11/7/18 Matni, CS64, Fal8

Any Questions From Last Lecture?

11/7/18 Matni, CS64, Fal8

5 Minute Pop Quiz!

Consider this C/C++ code:

void third() {}

void second() {third();}
void first() {second();}
int main() {first();}

And consider this supposedly
equivalent MIPS code = =

a) Are there any errorsinit?

(i.e. will it run?)

b) Does it follow the MIPS C.C.?
EXPLAIN YOUR ANSWER

11/7/18

Matni, CS64, Fal8

third:
jr $ra
second:
move $tO, %$ra
jal third
jr $t0
first:

move $tl1, $ra
jal second
jr $t1l

main:
jal first
1i $vo, 10
syscall

Lecture Outline

* Recapping MIPS Calling Convention
— Function calling function example

— Recursive function example

11/7/18 Matni, CS64, Fal8

The MIPS Convention In Its Essence

e Remember: Preserved vs Unpreserved Regs
* Preserved: Ss0 - Ss7, and Ssp, Sra
* Unpreserved: St0-St9, $a0-S$a3, and SvO - Svl

e Values held in Preserved Regs immediately before a function
call MUST be the same immediately after the function returns.

* Values held in Unpreserved Regs must always be assumed to
change after a function call is performed.

— S$a0 - Sa3 are for passing arguments into a function
— SvO0 - Sv1 are for passing values from a function

11/7/18 Matni, CS64, Fal8 6

How the Stack Works

* Upon reset, Ssp points to the

“bottom of the stack” - the stack 1mit | N\ M \
largest address for the stack

» (OX7FFF FFFC, see MIPS RefCard) e
Garhage

* As you move Ssp, it goes from grack pointer
high to low address - "

0x0010 0000

* The “top of the stack” is
the stack limit
+ (0x1000 8000, see MIPS RefCard) POtto™ °f stagk

— Y

larger
addresses

11/7/18 Matni, CS64, Fal8

How the Stack Works

When you want to store some

N registers into the stack, the stack linit

convention says you must:

A. Make room in the stack

——

(i.e. move Ssp 4xN places) stack pointer

B. Then store words
accordingly

bottom

11/7/18 Matni, CS64, Fal8

__.-

of stack
—

NAANM

Garhage

smaller
addresses

0x0010 0000

Y

larger
addresses

How the Stack Works

Example:
You want to store 5s0, Ss1, and Ss2:

stack limit
T

addiu Ssp, Ssp, -12 # ‘cuz3x4=12

sw 550, 8(5sp)
sw 5s1, 4(5sp)
sw 5s2, 0(5sp)

stack pointer
——

bottom of stack
i

Ssp >

Ss2

Ss1

Bottom of $s0
stack >

11/7/18

Matni, CS64, Fal8

NNV

Garhage

smaller
addresses

0x0010 0000

larger
addresses

Y

An lllustrative Example

subTwo doesn’t call anything
What should | map aand b to?

int subTwo(int a, int b) »a0 and sal
Can | map sub to $t0?
{ . Ok, b/c | don’t care about St*
int sub = a - b; (not the best tactic, tho...)
return sub; Eventually, | have to have sub be Sv0
}
doSomething DOES call a function
What should | map x and y to?
int dosomething(int X, int y) Since we want to preserve them across
{ the call to subTwo, we should map them to
. Ss0 and Ss1
:!'nt a = subTwo(x, y); What should | map aand b to?
int b = subTwo (y’ X)) “a+b” has to eventually be Sv0. | should
return a + b; make at least a be a preserved reg (5s2). Since
} | get b back from a call and there’s no other

call after it, | can likely get away with not
using a preserved reg for b.

viauiil, CoUt; rouxw =

subTwo:
sub $vO, $a0, %al
jr $ra

doSomething:

preserve for the sake
of whatever called

doSomething

addiu $sp, $sp, -16

sw $s0, 0($sp)
sw $s1, 4($sp)
sw $s2, 8($sp)
sw $ra, 12(%$sp)

move $s0, $a0
move $sl1, $al

jal subTwo

move $s2, $vO

11/7/18

move $a0@, $si
move $al, $sO

jal subTwo

add $vo, $vo, $s2

int subTwo(int a, int b)

{

int sub = a - b;
return sub;

}

int doSomething(int x, 1int y)
{

int a = subTwo(x, y);
int b = subTwo(y, x);
return a + b; }

pop back the preserved
so that they’re ready
for whatever called

doSomething

lw $ra, 12($sp)
lw $s2, 8(%$sp)
lw $s1, 4($sp)
1w $s0, 0($sp)

addiu $sp, $sp, 16

jr $ra

Matni, CS64, Fal8

11

subTwo:
sub $vo, $a0, %$al
jr $ra

doSomething:

addiu $sp, $sp, -16
sw $s0, 0($sp)

sw $s1, 4($sp)

sw $s2, 8($sp)

sw $ra, 12($sp)

move $s0, $a0
move $s1, $al

jal subTwo
move $s2, $vO)

move $a0@, $s1
move $al, $sO

jal subTwo
add $vo, $vo, $s2

lw $ra, 12($sp)
lw $s2, 8($sp)
lw $s1, 4($sp)
1w $s0, 0($sp)
addiu $sp, $sp, 16

jr $ra

int subTwo(int a, 1int b)

{
int sub = a - b;
return sub;

J
int doSomething(int x, int y)
{

int a = subTwo(x, y);

int b = subTwo(y, x);

return a + b;

}

stack $ra
s
"Orig. 551
"Orig 557
"Grig-ora"

Sa0 Sal

Arguments W W

$s0 $sl $s2
Preserved |WALLH WAL RN
Sto - St9

Unpreserved E

Sv0

Result Value 5

subTwo:
sub $vo, $a0, %$al
jr $ra

doSomething:

addiu $sp, $sp, -16
sw $s0, 0($sp)

sw $s1, 4($sp)

sw $s2, 8($sp)

sw $ra, 12($sp)

move $s0, $a0
move $s1, $al

jal subTwo
move $s2, $vO

stack $ra
s
"Orig. 551
"Orig 557
"Grig-ora"

move $a@, $si
move $al, $so

jal subTwo
add $vo, $ve, $s2

lw $ra, 12($sp)
lw $s2, 8($sp)
lw $s1, 4($sp)
1w $s0, 0($sp)
addiu $sp, $sp, 16

jr $ra

int subTwo(int a, 1int b)

{
int sub = a - b;
return sub;

J
int doSomething(int x, int y)
{

int a = subTwo(x, y);

int b = subTwo(y, x);

return a + b;

}

Sa0 Sal

Arguments m W

$s0 $sl $s2
Preserved |WALLH WAL RN
Sto - St9

Unpreserved E

Sv0

Result Value ﬁ -----

subTwo:
sub $vo, $a0, %$al
jr $ra

doSomething:

addiu $sp, $sp, -16
sw $s0, 0($sp)

sw $s1, 4($sp)

sw $s2, 8($sp)

sw $ra, 12($sp)

move $s0, $a0
move $s1, $al

jal subTwo
move $s2, $vO

stack $ra
sy
"Orig. 551
"Orig 557
"Grig-ora"

move $a0@, $s1
move $al, $sO

jal subTwo

add $vo, $vo, $s2
lw $ra, 12($sp)

lw $s2, 8($sp)

lw $s1, 4($sp)

1w $s0, 0($sp)
addiu $sp, $sp, 16

jr $ra

Original caller Sra

{

}

int subTwo(int a, 1int b)

int sub = a - b;
return sub;

return a + b;

J
int doSomething(int x, int y)
{

int a = subTwo(x, y);

int b = subTwo(y, x);

Sa0 Sal

Arguments m W

Ss0 Ssl

Ss2

JE I “orig- | “orig. | “orig. |

St0

Unpreserved E

Sv0

Result Value -B

Lessons Learned

* We passed arguments into the functions using $a*

* We used $s* to work out calculations in registers that we wanted to
preserve, so we made sure to save them in the call stack

— These var values DO need to live beyond a call

— In the end, the original values were returned back

* We could use $t* to work out some calcs. in regs that we did not need to
preserve

— These values DO NOT need to live beyond a function call

 We used $v* as regs. to return the value of the function

11/7/18 Matni, CS64, Fal8

Another Example Using Recursion

11/7/18 Matni, CS64, Fal8

16

Recursive Functions

* This same setup handles nested function calls
and recursion

— i.e. By saving $ra methodically on the stack

 Example: recursive fibonacci.asm

11/7/18 Matni, CS64, Fal8

17

recursive fibonacci.asm

Recall the Fibonacci Series: 0,1, 1, 2, 3, 5, 8, 13, etc...
fib(n) = fib(n — 1) + fib(n — 2)

In C/C++, we might write the recursive function as:
int fib(int n)
{

~ if (n == 0)
return (0);

Base cases = else

if (n == 1)
- return (1);
else

return (fib(n-1) + fib(n-2));

11/7/18 Matni, CS64, Fal8

18

recursive fibonacci.asm

 We'll need at least 3 registers to keep track of:
— The (single) input to the call, i.e. var n
— The output (or partial output) to the call
— The value of Sra (since this is a recursive function)

* We'll use $s* registers b/c we need to preserve these
vars/regs. beyond the function call

If we make $s0 =nand $s1 = fib(n - 1)

* Then we need to save $s0, $s1 and $ra on the stack in the
“fibonnaci” function
— So that we do not corrupt/lose what’s already in these regs

11/7/18 Matni, CS64, Fal8

19

recursive fibonacci.asm

* So, we start off in the main: portion
— n is our argument into the function, so it’s in $a0

* We'll put our number (example: 7) in Sa0 and
then call the function “fibonacci”

—i.e. 1i $a0, 7
jal fibonacci

11/7/18 Matni, CS64, Fal8

20

recursive fibonacci.asm
Inside the function “fibonacci”

$s0 Ss1

* First: Check for the base cases
— Isn ($a0) equaltoOor1?

a0 ra
— Branch accordingly Orig. ra

e Next: Do the recursion --- but first. . .!

We need to plan for 3 words in the stack stack

— Ssp=5sp- 12

— Push 3 words in (i.e. 12 bytes)

— The order by which you put them in does $sp ——
not strictly matter, but it makes more “organized” |
sense to push $s0, then Ss1, then Sra e

11/7/18 Matni, CS64, Fal8 21

recursive fibonacci.asm

* Next: calculate fib(n —1) 5s0 Ss1 Svo

— Call recursively & copy output (Sv0) in $s1 W

|
* Next: calculate fib(n — 2) ﬁ ﬁ

stack

$sp ——
"G o1

Matni, CS64, Fal8 22

recursive fibonacci.asm

* Next: calculate fib(n — 1) % ﬁ ﬁéi
a0 ra

— Call recursively & copy output (Sv0) in $s1

* Next: calculate fib(n — 2) ﬁ ﬁ

— Call recursively & add $s1 to the output (SvO)

stack

$sp ——
“Grg e

Matni, CS64, Fal8 23

recursive fibonacci.asm

Next: calculate fib(n — 1)
— Call recursively & copy output (Sv0) in $s1 Oflg sO @ m
Next: calcula.te fib(n —2) é T ong -

— Call recursively & add $s1 to the output (Sv0)
Next: restore registers

— Pop the 3 words back to $s9, $s1, and $ra / stack
Next: return to caller (i.e. main)

— Issuea jr $ra instruction et o

Note how when we leave the function and go
back to the “callee” (main), we did not
disturb what was in the registers previously W
And now we have our output where it should $sp ——

be, in $vo Matni, CS64, Fa18 24

A Closer Look at the Code

* Open recursive_fibonacci.asm

11/7/18 Matni, CS64, Fal8

25

Tail Recursion

* Check out the demo file tail recursive factorial.asm at home

 What’s special about the tail recursive functions (see example)?

— Where the recursive call is the very last thing in the function.

— With the right optimization, it can use a constant stack space
(no need to keep saving Sra over and over - it’s more efficient)

int TRFac(int n, int accum)

{

if (n == 0)

return accum;

else

11/7/18

return TRFac(n - 1, n * accum);

Matni, CS64, Fal8

For example, if you said:
TRFac(4, 1)

Then the program would return:
TRFac(3, 4), then return
TRFac(2, 12), then return
TRFac(1, 24), then return
TRFac(0, 24), then, since n =0,
It would return 24

26

Your To-Dos

* Again, MAKE SURE you’ve read the
MIPS Calling Convention PDF
from our class website

* Go over the fibonnaci.asm and
tail_recursive factorial.asm programs

* Next week: Intro to Digital Logic

11/7/18 Matni, CS64, Fal8

27

11/7/18

</LECTURE>

Matni, CS64, Fal8

28

