Flow Control in Assembly Language

CS 64: Computer Organization and Design Logic
Lecture #5
Fall 2018

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Legend: Adm. Grace Hopper coined the term "debugging" when a moth
was removed from the computer she was working on (see below)
Reality: The term “bug” was used in engineering in the 19%" century. As

seen independently from various scientists,

. . . 1037 sy 015
including Ada Lovelace and Thomas Edison. 037 §YC 98 <ok
Th iS 13 wc (030 MP ~me EFFTYYEL) 5=B3) .0/5725055()
033y PRO. Y 2. 130y26YiS
Conw ok 2.13067¢5 :
Week Roys o 033 pld suiid o) 4
im e 4t - -

34
On 1799 DT“"'-‘\"J CO.StV\e , QP./J(S"\: cJ\cck)
IS 23 ‘o ted “u”'\' .Aj'et‘ TES.*

{4 *Jd: ’
ll::’l":][”‘:,’ ‘$;~S’ 62145\ “*;72) Q:L\f\e.‘
KnOW Uho'ﬁ)n\ FQ\qU\

o .
SV A 5,

Dat?!” 0 Qﬂchua\ cdse. o-f 5«1 Lcim‘ {ouni.

Juoe

10/17/18

Administrative

 Reminder that your midterm exam is on October 315t
— Same time/place as regular lecture
— DSP students: make arrangements ASAP

 Lab 1is graded

10/17/18 Matni, CS64, Fal8 3

Lecture Outline

* More on instructions in MIPS
 Operand Use
e .data Directives and Basic Memory Use

* Flow Control in Assembly
— With Demos!

10/17/18 Matni, CS64, Fal8

Any Questions From Last Lecture?

10/17/18 Matni, CS64, Fal8

Examples
We’ve
Seen

So Far...

10/17/18

MIPS System Services

Service System Call Code Arguments Result
print_int 1 $a0 = integer
print_float 2 $£12 = float
print_double 3 $£12 = double
print_string 4 $a0 = string stdout
read_int 5 integer (in $v0)
read_float 6 float (in $£0)
read_double 7 double (in $£0)
read_string 8 $a0 = buffer, $al = length stdin
sbrk 9 $a0 = amount address (in $v0)
exit 10
print_character 11 $a0 = character
read_character 12 character (in $vo0)
open 13 $a0 = filename, m
sal = flags, sa2 = mode
read 14 $ao0 = file descriptor, bytes read (in $v0)
$al = buffer, $a2 = count
write 15 $a0 = file descriptor, bytes written (in $vo0)
sal = buffer, saz = count
close 16 sao = file descriptor 0 (in svo) File |/ o)
exit2 17 $a0 = value

Now Let’s Make it a
Full Program (almost)

e We need to tell the Allocated as
assembler (and its simulator) program RUN

which bits should be placed
where in memory

— Bits? Constants to be used in the
(remember: everything ends up beinga program (like strings)
bunch of 1’s and 0’s !) Allocated at

program LOAD

mutable global variables

the text of the program

10/17/18 Matni, CS64, Fal8

Stack

! |

Free Memory
‘ Heap ‘

Initialized Data

Uninitialized Data
(BSS)

Text

Marking the Code Stack
! -

* For the simulator, you’ll S Free Memory
need a .text directive to program RUN T
specify code

.text ‘ Heap ‘

‘Tngig pgogr‘am Constants to be used in the -
1i $t 1; 7 program (like strings) Initialized Data
add $t3, $to, $ti1 Allocated at

. program LOAD
Print to standard output Uninitialized Data
r:rlu])-vﬁvgéei- $t3 mutable global variables (BSS)
syscall
End program —| the text of the program Text
1i $vo, 10
syscall

I
10/17/18 Matni, CS64, Fal8 8

List of all Core Instructions in MIPS

CORE INSTRUCTION SET

FOR.--

NAME, MNEMONIC MAT
Add add R
Add Immediate addi I
Add Imm. Unsigned addiu [
Add Unsigned addu R
And and R
And Immediate andi I

Branch On Equal beg I

Branch On Not Equal bne I

Jump y J
Jump And Link jal J
Jump Register jr R

Load Byte Unsigned 1bu I

Load Halfword 1k I
Unsigned .
Load Linked 11 I

{4 R”

Arithmetic

Branching

Matni, CS64, Fal8

Load Upper Imm.
Load Word
Nor

Or
Or Immediate
Set Less Than

Set Less Than Imm.
Set Less Than Imm.

Lnsigned
=]

Set Less Than Unsig.
Shift Left Logical
Shift Right Logical

Store Byte
Store Conditional

Store Halfword

Store Word
Subtract
Subtract Unsigned

lui
1w
nor
or
ori
slt
slti
sltin
sltu

s11

sb
sC

sh

SwW
sub

subu

~ A

List of all Core Instructions in MIPS

CORE INSTRUCTION SET

FOR-

NAME, MNEMONIC MAT
Add add R
Add Immediate addi I
Add Imm. Unsigned addiu I
Add Unsigned addu R
And and R
And Immediate andi I

Branch On Equal beg I

Branch On Not Equal bne I

Jump y J
Jump And Link jal J
Jump Register ir R

llI”

Arithmetic

Branching

Not for CS64

Matni, CS64, Fal8

Load Upper Imm.

lui

Load Word

1w

Nor
Or

ner

or

Or Immediate

ori

Set Less Than

slt

Set Less Than Imm.

slti

Set Less Than Imm.
Unsigned

Set Less Than Unsig.
Shift Left Logical
Shift Right Logical

sltin

sltu

s11

srl

Store Word SwW I
Subtract sub R
Subtract Unsigned subu R

ca

List of the Arithmetic Core Instructions in MIPS

FOR-

NAME, MNEMONIC MAT
Branch On FP True bclt FI
Branch On FP False bec1f FI

Divide div R
Divide Unsigned divu R
FP Add Single add.s FR
giﬁ:}g add.d FR
FP Compare Single c.x.s* FR
FP Compare __ .. R

*(xiseqg, 1t,0r 1e) (opis =
FP Divide Single div.s
FP Divide

Double div.d FR
FP Multiply Single mul.s FR
gl;lll\gileltlply mul.d FR
FP Subtract Single sub.s FR
Elz)usll;lztraCt sub.d FR
Load FP Single lwecl I
Load FP

Double Aact I
Move From Hi mfhi R
Move From Lo mflo R
Move From Control mfc0 R
Multiply mult R
Multiply Unsigned multu R
Shift Right Arith. sra R
Store FP Single swcl I

10/17/18 Store FP sde1 I 1

Double

The move instruction

 The move instruction does not actually show up in SPIM

* Itis a pseudo-instruction

* It’s easy for us to use, but it’s actually a “macro” of
another actual instruction

ORIGINAL: move $a0@, $t3
ACTUAL: addu $a0, $zero, 9$t3
what’s addu? what’s $zero?

10/17/18 Matni, CS64, Fal8

12

Why Pseudocodes?

And what’s this $zero??

* Szero

— Specified like a normal register,
but does not behave like a normal register

— Writes to Szero are not saved
— Reads from Szero always return 0 value

 Why have move as a pseudo-instruction instead of as an
actual instruction?

— It’s one less instruction to worry about
— One design goal of RISC is to cut out redundancy
— move isn’t the only one! 11 is another one too!

10/17/18 Matni, CS64, Fal8

13

List of all Psuedolnstructions in MIPS
That You Are Allowed to Use in CS64!!!

PSEUDOINSTRUCTION SET
NAME MNEMONIC
Branch Less Than blt
Branch Greater Than bgt
Branch Less Than or Equal ble
Branch Greater Than or Equal bge
Load Immediate 1i
Move move
plus this one 2 Load Address la

ALL OF THIS AND MORE IS ON YOUR HANDY “MIPS REFERENCE CARD"”
FOUND ON THE CLASS WEBSITE

10/17/18 Matni, CS64, Fal8 14

A Note About Operands

 Operands in arithmetic instructions are limited
and are done in a certain order

— Arithmetic operations always happen in the registers

e Example: f=(g+h)—(i+j)
— The order is prescribed by the parentheses

— Let’s say, f, g, h, i, j are assigned to registers
$s0, Ss1, Ss2, Ss3, Ss4 respectively

— What would the MIPS assembly code look like?

10/17/18 Matni, CS64, Fal8

15

Exa m p | e 1 Syntax for “add”
add rd, rs, rt

destination, sourcel, source2

f=(g+h)—(i+])
i.e. SsO = (Ssl + 552’) ~ (553 + 554’)

add $to, $s1, $s2
add $t1, $s3, $s4
sub $s0, $to, $t1

10/17/18 Matni, CS64, Fal8 16

Example 2

f=g*h-i
i.e. 5s0 = (Ss1 * Ss2) — Ss3
—

mult $s1, $s2
mflo $tO

mflo directs where the answer of the mult should go

sub $s0, $tO, $s3

10/17/18 Matni, CS64, Fal8 17

What’s the Difference Between...

 add and addu and addi and addiu
— add : add what’s in 2 registers & put result in another
— addu : same as add, but only w/ unsigned numbers

— addi: add aninteger to what’s in a register &
put result in another register

— addiu : same as addi, but only w/ unsigned numbers

* Syntax:
add $rd, $rs, $rt (R-Type)
addu $rd, $rs, $rt (R-Type)
addi $rd, $rs, immediate (I-Type)
addiu $rd, $rs, immediate (I-Type)

This is a 16-bit number (why not 32b????)
10/17/18 Matni, CS64, Fa18

18

Global Variables, Arrays, and Strings

* Typically, global variables are placed directly in memory and not
registers
— Why might this be?

* Ans: Not enough registers...
esp. if there are multiple variables

 What do you think we do with arrays? Why?
 What do you think we do with strings? Why?

e We use the .data directive

— To declare variables, their values, and their names used in the
program

— Storage is allocated in main memory (RAM)

10/17/18 Matni, CS64, Fal8 19

.data Declaration Types

w/ Examples
varl: .byte 9 # declare a single byte with value 9
var2: .half 63 # declare a 16-bit half-word w/ val. 63
var3: .word 9433 # declare a 32-bit word w/ val. 9433
numl: .float 3.14 # declare 32-bit floating point number
num2: .double 6.28 # declare 64-bit floating pointer number
strl: .ascii "Text" # declare a string of chars
str3: .asciiz "Text" # declare a null-terminated string
str2: .Space 5 # reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.

Highlighted ones are the ones most commonly used in this class.

10/17/18 Matni, CS64, Fal8 20

livsla

li Load Immediate

— Use this when you want to put an integer value
into a register

— Example: 1i $to, 42

la Load Address
— Use this when you want to put an address value into a register
— Example: la $t0, myLittlePony

where “mylittlePony” is a pre-defined label for something
in memory (defined under the .data directive).

10/17/18 Matni, CS64, Fal8

21

.data Examp|e 3

name: .asciiz “Jimbo Jones is ”)
rtn: .asciiz “ years old.\n” What does this do?

.text
main:

1li $vo, 4

la $a@, name # la = load memory address

syscall v
Free Memory
1i $veo, 1 T
1li $a0, 15
syscall

]] ? Initialized Dat
1i $v@, il What goes in here? > \l‘
la $a@, rtn

Uninitialized Data

Stack

Heap

syscall (BSS)
1i $vo, 10 What goes in here? 2> Text
syscall

10/17/18 Matni, CS64, Fal8 22

Conditionals

 What if we wanted to do:
if (x == 0) { printf(“x is zero”); }
— Can we write this in assembly with what we know?

* No... we haven’t covered if-else (aka branching)

 What do we need to implement this?
— A way to compare numbers

— A way to conditionally execute code

10/17/18 Matni, CS64, Fal8 23

Relevant Instructions in MIPS
for use with branching conditionals

 Comparing numbers:
set-less-than (s1t)

— Set some register (i.e. make it “1”) if a less-than
comparison of some other registers is true

* Conditional execution:
branch-on-equal (beq)
branch-on-not-equal (bne)

— “Go to” some other place in the code (i.e. jump)

10/17/18 Matni, CS64, Fal8

24

1f (x == 0) { printf(“x is zero”); }

.data

X_is zero: .asciiz “x is zero”<<::%

.text

Note
the
flow

bne $t0, $zero, after print

Create a constant
string called
“x_is_zero”

If $t0 !=0 go to
the block
labeled as

“after_print”

1i $vO, 4 |

Z
~

la $a0, x_is zero

(otherwise) prepare to
print a string...

syscall \§§::::::::::I

...and that string is
inside of “x_is_zero”

after print:

|

1i $ve, 10

End the

syscall

10/17/18 Matni, CS64, Fal8

program

25

Loops

* How might we translate the following C++ to assembly?

n = 3;
sum = 9;
while (n != 0)
{
sum += n;
n--,
}

cout << sum;

10/17/18 Matni, CS64, Fal8

n = 3, sum = 0,
/

while (n != 0) { sum += n; n--; }

.text . .
main: / Set up the variables in StO, St1
li $to, 3 # n .

li $t1, @ # running sum

lOOp: | o)
beq $t0, $zero, loop_ exit — f $t0 == 0 go to “loop_exit
addu $t1, $t1, $to —— (otherwise) make St1 the (unsigned) sum of Stl
addi te, sto, -1 and StO (i.e. sum += n)
J]_OOP\‘\ decrement St0 (i.e. n--)

loop exit: jump to the code labeled “loop”
1i $vo, 1 (i.e. repeat loop)
move $a@, $ti . .
cvscall prepare to print out an integer,

y which is inside the Stl reg. (i.e. print sum)

1i $vo, 10

syscall \ end the program

10/17/18 Matni, CS64, Fal8 27

Let’s Run More Programs!!
Using SPIM

* Morel!l
* This time exploring conditional logic and loops

These assembly code programs are made available
to you via the class webpage

10/17/18 Matni, CS64, Fal8 28

YOUR TO-DOs

e Review ALL the demo code
— Available via the class website

* Assignment #3
— Due Friday

10/17/18 Matni, CS64, Fal8

29

10/17/18

</LECTURE>

Matni, CS64, Fal8

30

