
Flow	Control	in	Assembly	Language	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#5	
Fall	2018	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

10/17/18	 Matni,	CS64,	Fa18	 2	

Legend:	Adm.	Grace	Hopper	coined	the	term	"debugging"	when	a	moth	
was	removed	from	the	computer	she	was	working	on	(see	below)	

Reality:	The	term	“bug”	was	used	in	engineering	in	the	19th	century.	As	
seen	independently	from	various	scientists,		
including	Ada	Lovelace	and	Thomas	Edison.	

This	
Week	
on	

“Didja	
Know	
Dat?!”	

Administrative	

•  Reminder	that	your	midterm	exam	is	on	October	31st		
–  Same	time/place	as	regular	lecture	
–  DSP	students:	make	arrangements	ASAP	

•  Lab	1	is	graded	

10/17/18	 Matni,	CS64,	Fa18	 3	

Lecture	Outline	

•  More	on	instructions	in	MIPS	

•  Operand	Use	

•  .data	Directives	and	Basic	Memory	Use	

•  Flow	Control	in	Assembly	
– With	Demos!	

10/17/18	 Matni,	CS64,	Fa18	 4	

Any	Questions	From	Last	Lecture?	

10/17/18	 Matni,	CS64,	Fa18	 5	

10/17/18	 Matni,	CS64,	Fa18	 6	

MIPS	System	Services	Examples	
We’ve	
Seen	
So	Far…	

stdout	

stdin	

File	I/O	

Now	Let’s	Make	it	a		
Full	Program	(almost)	

•  We	need	to	tell	the	
assembler	(and	its	simulator)	
which	bits	should	be	placed	
where	in	memory	
–  Bits?	

(remember:	everything	ends	up	being	a	
bunch	of	1’s	and	0’s	!)	

10/17/18	 Matni,	CS64,	Fa18	 7	

Allocated	as	
program	RUN	

Allocated	at	
program	LOAD	

Constants	to	be	used	in	the	
program	(like	strings)	

mutable	global	variables	

the	text	of	the	program	

Marking	the	Code	

•  For	the	simulator,	you’ll	
need	a	.text	directive	to	
specify	code	

10/17/18	 Matni,	CS64,	Fa18	 8	

Allocated	as	
program	RUN	

Allocated	at	
program	LOAD	

Constants	to	be	used	in	the	
program	(like	strings)	

mutable	global	variables	

the	text	of	the	program	

.text	
	
#	Main	program	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
	
#	Print	to	standard	output	
li	$v0,	1	
move	$a0,	$t3	
syscall	
	
#	End	program	
li	$v0,	10	
syscall	

10/17/18	 Matni,	CS64,	Fa18	 9	

List	of	all	Core	Instructions	in	MIPS	
“R”	

Arithmetic	

Branching	

10/17/18	 Matni,	CS64,	Fa18	 10	

List	of	all	Core	Instructions	in	MIPS	
“I”	

Arithmetic	

Branching	

Memory	

Not	for	CS64	

10/17/18	 Matni,	CS64,	Fa18	 11	

List	of	the	Arithmetic	Core	Instructions	in	MIPS	

Mostly	used	in	CS64	

The	move	instruction	

•  The	move	instruction	does	not	actually	show	up	in	SPIM	

•  It	is	a	pseudo-instruction		
•  It’s	easy	for	us	to	use,	but	it’s	actually	a	“macro”	of	

another	actual	instruction	
	
ORIGINAL: 	move	$a0,	$t3	
ACTUAL: 	 	addu	$a0,	$zero,	$t3	
	 	 	 	#	what’s	addu?	what’s	$zero?	

10/17/18	 Matni,	CS64,	Fa18	 12	

Why	Pseudocodes?	
And	what’s	this	$zero??	

•  $zero	
–  Specified	like	a	normal	register,		

	 	 	 	 	but	does	not	behave	like	a	normal	register	
–  Writes	to	$zero	are	not	saved	
–  Reads	from	$zero	always	return	0	value	

•  Why	have	move	as	a	pseudo-instruction	instead	of	as	an	
actual	instruction?	
–  It’s	one	less	instruction	to	worry	about	
–  One	design	goal	of	RISC	is	to	cut	out	redundancy	
–  move	isn’t	the	only	one!	li	is	another	one	too!	

10/17/18	 Matni,	CS64,	Fa18	 13	

10/17/18	 Matni,	CS64,	Fa18	 14	

List	of	all	PsuedoInstructions	in	MIPS	
That	You	Are	Allowed	to	Use	in	CS64!!!	

ALL	OF	THIS	AND	MORE	IS	ON	YOUR	HANDY	“MIPS	REFERENCE	CARD”	
FOUND	ON	THE	CLASS	WEBSITE	

 plus this one à Load Address la

A	Note	About	Operands	

•  Operands	in	arithmetic	instructions	are	limited	
and	are	done	in	a	certain	order	
– Arithmetic	operations	always	happen	in	the	registers	

•  Example:	f	=	(g	+	h)	–	(i	+	j)			
–  The	order	is	prescribed	by	the	parentheses	
–  Let’s	say,	f,	g,	h,	i,	j	are	assigned	to	registers		

$s0,	$s1,	$s2,	$s3,	$s4	respectively	
– What	would	the	MIPS	assembly	code	look	like?	

10/17/18	 Matni,	CS64,	Fa18	 15	

Example	1	

f	=	(g	+	h)	–	(i	+	j)		
	 	i.e.	$s0	=	($s1	+	$s2)	–	($s3	+	$s4)	

	
	

add	$t0,	$s1,	$s2	
add	$t1,	$s3,	$s4	
sub	$s0,	$t0,	$t1	

	
10/17/18	 Matni,	CS64,	Fa18	 16	

add	rd,	rs,	rt	
destination,	source1,	source2	

Syntax	for	“add”	

Example	2	

f	=	g	*	h	-	i	
	 	i.e.	$s0	=	($s1	*	$s2)	–	$s3	

	
	

mult	$s1,	$s2	
mflo	$t0	 	 	 		
#	mflo	directs	where	the	answer	of	the	mult	should	go	

sub	$s0,	$t0,	$s3	
	
10/17/18	 Matni,	CS64,	Fa18	 17	

What’s	the	Difference	Between…	
•  add	and	addu	and	addi	and	addiu	
–  add	: 	add	what’s	in	2	registers	&	put	result	in	another	
–  addu	: 	same	as	add,	but	only	w/	unsigned	numbers	
–  addi	: 	add	an	integer	to	what’s	in	a	register	&		

	 	 	put	result	in	another	register	
–  addiu	: 	same	as	addi,	but	only	w/	unsigned	numbers	

•  Syntax:	
add	$rd,	$rs,	$rt 	 	 	 	 	(R-Type)	
addu	$rd,	$rs,	$rt	 	 	 	 	(R-Type)	
addi	$rd,	$rs,	immediate	 	 	(I-Type)	
addiu	$rd,	$rs,	immediate 	 	(I-Type)	
	

10/17/18	 Matni,	CS64,	Fa18	 18	
This	is	a	16-bit	number	(why	not	32b????)	

Global	Variables,	Arrays,	and	Strings	

•  Typically,	global	variables	are	placed	directly	in	memory	and	not	
registers	
–  Why	might	this	be?	

•  Ans:	Not	enough	registers…		
	 	 	esp.	if	there	are	multiple	variables	

•  What	do	you	think	we	do	with	arrays?	Why?	
•  What	do	you	think	we	do	with	strings?	Why?	

•  We	use	the	.data	directive	
–  To	declare	variables,	their	values,	and	their	names	used	in	the	

program	
–  Storage	is	allocated	in	main	memory	(RAM)	

10/17/18	 Matni,	CS64,	Fa18	 19	

.data	Declaration	Types	
w/	Examples	

var1:			.byte	9								#	declare	a	single	byte	with	value	9	
var2:			.half	63							#	declare	a	16-bit	half-word	w/	val.	63	
var3:			.word	9433					#	declare	a	32-bit	word	w/	val.	9433	
num1:			.float	3.14				#	declare	32-bit	floating	point	number	
num2:			.double	6.28			#	declare	64-bit	floating	pointer	number	
str1:			.ascii	"Text"		#	declare	a	string	of	chars									
str3:			.asciiz	"Text"	#	declare	a	null-terminated	string	
str2:			.space	5							#	reserve	5	bytes	of	space	(useful	for	arrays)	
	

These	are	now	reserved	in	memory	and	we	can	call	them	up	by	
loading	their	memory	address	into	the	appropriate	registers.	
Highlighted	ones	are	the	ones	most	commonly	used	in	this	class.	

10/17/18	 Matni,	CS64,	Fa18	 20	

li	vs	la	

•  li 	 	Load	Immediate	
–  Use	this	when	you	want	to	put	an	integer	value	

into	a	register	
–  Example:								li	$t0,	42	

•  la 	 	Load	Address	
–  Use	this	when	you	want	to	put	an	address	value	into	a	register	
–  Example:								la	$t0,	myLittlePony	
	where	“myLittlePony”	is	a	pre-defined	label	for	something		
	in	memory	(defined	under	the	.data	directive).	

10/17/18	 Matni,	CS64,	Fa18	 21	

10/17/18	 Matni,	CS64,	Fa18	 22	

Example	3	
What	does	this	do?	

.data	
name:	.asciiz	“Jimbo	Jones	is	”	
rtn:	.asciiz	“	years	old.\n”	
	
.text	
main:	

	li	$v0,	4	
	la	$a0,	name	 	#	la	=	load	memory	address	
	syscall	

	
	li	$v0,	1	
	li	$a0,	15	
	syscall	

	
	li	$v0,	4	
	la	$a0,	rtn	
	syscall	

	
	li	$v0,	10	
	syscall	

What	goes	in	here?	àà	

What	goes	in	here?	àà	

Conditionals	

•  What	if	we	wanted	to	do:	
	if	(x	==	0)	{	printf(“x	is	zero”);	}	
– Can	we	write	this	in	assembly	with	what	we	know?	
•  No…	we	haven’t	covered	if-else	(aka	branching)	

•  What	do	we	need	to	implement	this?	
– A	way	to	compare	numbers	
– A	way	to	conditionally	execute	code	

10/17/18	 Matni,	CS64,	Fa18	 23	

Relevant	Instructions	in	MIPS	
for	use	with	branching	conditionals	

•  Comparing	numbers:		
	 	 	 	set-less-than	(slt)	
– Set	some	register	(i.e.	make	it	“1”)	if	a	less-than	

comparison	of	some	other	registers	is	true	

•  Conditional	execution:		
	 	 	 	branch-on-equal	(beq)		
	 	 	 	branch-on-not-equal	(bne)	
– “Go	to”	some	other	place	in	the	code	(i.e.	jump)	

10/17/18	 Matni,	CS64,	Fa18	 24	

if	(x	==	0)	{	printf(“x	is	zero”);	}	

.data	
	x_is_zero:	.asciiz	“x	is	zero”	

	
.text	
			bne	$t0,	$zero,	after_print	
			li	$v0,	4	
			la	$a0,	x_is_zero	
			syscall	
	
after_print:		
			li	$v0,	10	
			syscall	

10/17/18	 Matni,	CS64,	Fa18	 25	

Create	a	constant	
string	called	
“x_is_zero”		

If	$t0	!=	0	go	to	
the	block	
labeled	as	

“after_print”	

End	the	
program	

(otherwise)	prepare	to	
print	a	string…	

…and	that	string	is	
inside	of	“x_is_zero”	

Note	
the	
flow	

Loops	
•  How	might	we	translate	the	following	C++	to	assembly?	

	
n	=	3;	
sum	=	0;	
while	(n	!=	0)		
{	
			sum	+=	n;	
			n--;		
}	
cout	<<	sum;	

10/17/18	 Matni,	CS64,	Fa18	 26	

n	=	3;	sum	=	0;	
while	(n	!=	0)	{	sum	+=	n;	n--;	}	

	
.text	
main:	
			li	$t0,	3			#	n	
			li	$t1,	0			#	running	sum	
loop:	
			beq	$t0,	$zero,	loop_exit	
			addu	$t1,	$t1,	$t0	
			addi	$t0,	$t0,	-1	
			j	loop	
	
loop_exit:	
			li	$v0,	1	
			move	$a0,	$t1	
			syscall	
	
			li	$v0,	10	
			syscall	

10/17/18	 Matni,	CS64,	Fa18	 27	

Set	up	the	variables	in	$t0,	$t1	

If	$t0	==	0	go	to	“loop_exit”	

(otherwise)	make	$t1	the	(unsigned)	sum	of	$t1	
and	$t0		(i.e.	sum	+=	n)	

decrement	$t0				(i.e.	n--)	
jump	to	the	code	labeled	“loop”		

(i.e.	repeat	loop)	

end	the	program	

prepare	to	print	out	an	integer,		
which	is	inside	the	$t1	reg.	(i.e.	print	sum)	

Let’s	Run	More	Programs!!	
Using	SPIM	

•  More!!	
•  This	time	exploring	conditional	logic	and	loops	

These	assembly	code	programs	are	made	available	
to	you	via	the	class	webpage	

10/17/18	 Matni,	CS64,	Fa18	 28	

YOUR	TO-DOs	

•  Review	ALL	the	demo	code		
– Available	via	the	class	website	

•  Assignment	#3	
– Due	Friday	

10/17/18	 Matni,	CS64,	Fa18	 29	

10/17/18	 Matni,	CS64,	Fa18	 30	

